All posts by Alan Schneyer

Fairbanks Pharmaceuticals to compete in semifinals of Diabetes Innovation Challenge

Fairbanks Pharmaceuticals has been selected as a semi-finalist in the Diabetes Innovation Challenge sponsored by the T1D Exchange, the Massachusetts Medical Device Development Center (M2D2) at UMass, the Juvenile Diabetes Research Foundation (JDRF) and the American Diabetes Association (ADA).

The Challenge is a proposal- and presentation-based competition for small companies in the T1 and T2 space that are making real progress towards better outcomes for those diagnosed.  It offers the chance to win in-kind awards and receive early and later-stage validation of their ideas and products specific to Type 1 and Type 2 diabetes.

Read more about the Challenge, or come see  us at UMass Lowell on October 5th, 2016 at the pre-clinical “pitch-off.”

 

Activin regulates alpha and beta cell fate-determining gene expression

The transcription factor Arx is required to form pancreatic islet alpha cells while the factor Pax4 is required to specify beta cells.  Reducing Arx expression in alpha cells is sufficient to turn them into beta cells.Fairbanks scientists have collaborated on  new research published in Endocrinology showing that activin directly suppressed Arx and increased Pax4 expression, consistent with our hypothesis that increased activin signaling promotes alpha to beta cell transdifferentiation.

Since FSTL3 knockout mice have increased activin signaling, these new results suggest that the enhanced beta cell formation in FSTL3 knockout mice could be due to activin-assisted transdifferentiation from alpha cells.  More research is needed to determine if this process occurs naturally and amenable to intervention as a basis for developing novel diabetes treatments.

View/download article

Activin restores insulin release in diabetes

Fairbanks Pharmaceuticals scientists collaborated on a recently published study in which the hormone activin was applied to human islets from donors who had type 2 diabetes.  In untreated islets, glucose failed to stimulate insulin secretion as one would expect in diabetes.  But in the activin treated islets, elevated glucose stimulated insulin release to levels seen in normal islets in the absence of activin.

This is important because of another part of this study in which gene expression was compared between normal and diabetic islets.  Activin production is very high in normal islets but reduced by 50% in diabetic islets.  Critically, the activin inhibitor, FSTL3, is expressed at 8-fold greater levels in diabetic islets compared to normal.  This means that functional activin (activin not inhibited by FSTL3) is much lower in diabetic islets.  This suggests that one defect in diabetic islets is loss of activin signaling and when that activin is restored, insulin release returns to normal.

Fairbanks Pharmaceuticals is developing technology that will inhibit the action of FSTL3. Therefore, the newly published research suggests that this technology could have important therapeutic effects in patients with diabetes to enhance insulin release and restore more normal glucose control.

View/download article

Fairbanks Pharmaceuticals Awarded MLSC Intern

Fairbanks Pharmaceuticals received an award from the Massachusetts Life Science Center to hire an intern starting in July 2015. Eddie MesitiAlfredo (Eddie) Mesiti, a 2014 graduate from the University of Massachusetts-Amherst with an undergraduate degree in Microbiology, was selected to fill this role.

Eddie is currently completing a Masters Degree in Applied Molecular Biotechnology.  This internship will help him in his degree program while amplifying progress in pursuing our research agenda.  Welcome Aboard Eddie!

Fairbanks Pharmaceuticals opens research laboratory

On November 25th, 2014, Fairbanks Pharmaceuticals opened its research laboratory in Springfield, Massachusetts.

Alan and Danielle 2
Technician Danielle Andrzejewski and CEO/CSO Alan Schneyer

The space is located at 3601 Main St within recently renovated open lab space that has a wealth of shared facilities available to Fairbanks scientists.

In our first two weeks we have been screening libraries to identify candidate compounds that we can then test for effectiveness in treating diabetes in animal models.  Its been a hectic start but now we are ready to focus on our research and hopefully make excellent progress.

The science behind Fairbanks Pharmaceuticals

In order to determine the function of Follistatin Like-3 we created knockout mice in which the gene that codes for this protein was disabled.  Mice without FSTL3 had larger pancreatic islets and improved glucose control suggesting that loss of FSTL3 might be beneficial for patients with diabetes.  We continued our analysis of these mice and found that the increased number of insulin producing beta cells was not due to increased proliferation of the existing beta cell population.

Our current research is focused on whether loss of FSTL3  stimulates a process where other cell types in the pancreas, such as alpha cells, change their fate and become beta cells, a process known as transdifferentiation or reprogramming.  Regardless of the actual mechanism, however, Fairbanks Pharmaceuticals is focused on development of new diabetes therapies based on altering FSTL3 function.